首页> 外文OA文献 >Multi-Hop Routing and Scheduling in Wireless Networks in the SINR model
【2h】

Multi-Hop Routing and Scheduling in Wireless Networks in the SINR model

机译:sINR模型中无线网络中的多跳路由与调度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present an algorithm for multi-hop routing and scheduling of requests inwireless networks in the \sinr\ model. The goal of our algorithm is to maximizethe throughput or maximize the minimum ratio between the flow and the demand. Our algorithm partitions the links into buckets. Every bucket consists of aset of links that have nearly equivalent reception powers. We denote the numberof nonempty buckets by $\sigdiv$. Our algorithm obtains an approximation ratioof $O(\sigdiv \cdot \log n)$, where $n$ denotes the number of nodes. For thecase of linear powers $\sigdiv =1$, hence the approximation ratio of thealgorithm is $O(\log n)$. This is the first practical approximation algorithmfor linear powers with an approximation ratio that depends only on $n$ (and noton the max-to-min distance ratio). If the transmission power of each link is part of the input (and arbitrary),then $\sigdiv = O(\log\Gamma + \log \Delta)$, where $\Gamma$ denotes the ratioof the max-to-min power, and $\Delta$ denotes the ratio of the max-to-mindistance. Hence, the approximation ratio is $O(\log n \cdot (\log\Gamma + \log\Delta))$. Finally, we consider the case that the algorithm needs to assign powers toeach link in a range $[\pmin,\pmax]$. An extension of the algorithm to thiscase achieves an approximation ratio of $O[(\log n + \log \log \Gamma) \cdot(\log\Gamma + \log \Delta)]$.
机译:我们在\ sinr \模型中提出了一种用于无线网络中请求的多跳路由和调度的算法。我们算法的目标是最大化吞吐量或最大化流量和需求之间的最小比率。我们的算法将链接划分为存储桶。每个存储桶由一组具有几乎相等的接收功率的链路组成。我们用$ \ sigdiv $表示非空存储桶的数量。我们的算法获得的近似比率为$ O(\ sigdiv \ cdot \ log n)$,其中$ n $表示节点数。对于线性幂$ \ sigdiv = 1 $,因此算法的近似比率为$ O(\ log n)$。这是线性功率的第一个实用的近似算法,其近似比率仅取决于$ n $(并且取决于最大与最小距离比率)。如果每个链路的传输功率是输入的一部分(并且是任意的),则$ \ sigdiv = O(\ log \ Gamma + \ log \ Delta)$,其中$ \ Gamma $表示最大值与最小值之比功率,$ \ Delta $表示最大距离与最小距离之比。因此,近似比率为$ O(\ log n \ cdot(\ log \ Gamma + \ log \ Delta))$。最后,我们考虑算法需要在$ [\ pmin,\ pmax] $范围内为每个链路分配功率的情况。对此算法的扩展实现了$ O [(\ log n + \ log \ log \ Gamma)\ cdot(\ log \ Gamma + \ log \ Delta)] $的近似比率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号